Function reference
-
AUC_of_cross_function() - The difference in AUC of the cross function curves
-
R_BT() - The ratio of tumour border cell count and tumour cell count
-
average_marker_intensity_within_radius() - average_marker_intensity_within_radius
-
average_minimum_distance() - average_minimum_distance
-
average_nearest_neighbor_index() - Average nearest neighbor index for point pattern (clustering or dispersion)
-
average_percentage_of_cells_within_radius() - average_percentage_of_cells_within_radius
-
calculate_cell_proportions() - calculate_cell_proportions
-
calculate_cross_functions() - calculate_cross_functions
-
calculate_distance_to_tumour_margin() - calculate_distance_to_tumour_margin
-
calculate_entropy() - calculate_entropy
-
calculate_minimum_distances_between_celltypes() - calculate_minimum_distances_between_celltypes
-
calculate_pairwise_distances_between_celltypes() - calculate_pairwise_distances_between_celltypes
-
calculate_percentage_of_grids() - calculate_percentage_of_grids
-
calculate_proportions_of_cells_in_structure() - calculate_proportions_of_cells_in_structure
-
calculate_spatial_autocorrelation() - calculate_spatial_autocorrelation
-
calculate_summary_distances_between_celltypes() - calculate_summary_distances_between_celltypes
-
calculate_summary_distances_of_cells_to_borders() - calculate_summary_distances_of_cells_to_borders
-
composition_of_neighborhoods() - composition_of_neighborhoods
-
compute_gradient() - compute_gradient
-
crossing_of_crossK() - crossing_of_crossK
-
define_celltypes() - define_celltypes
-
define_structure() - define_structure
-
defined_image - SCE object of a simulated image with defined cell types based on marker combinations.
-
dimensionality_reduction_plot() - Dimensionality reduction plot
-
entropy_gradient_aggregated() - The aggregated gradient of entropy and the peak of the gradient
-
format_colData_to_sce() - format_colData_to_sce
-
format_image_to_sce() - Format an image into a SingleCellExperiment object
-
format_sce_to_ppp() - format_sce_to_ppp
-
grid_metrics() - grid_metrics
-
identify_bordering_cells() - identify_bordering_cells
-
identify_neighborhoods() - identify_neighborhoods
-
image_no_markers - SCE object of a formatted image without marker intensities (simulated by `spaSim` package)
-
image_splitter() - Split a large image into sub images
-
marker_intensity_boxplot() - marker_intensity_boxplot
-
marker_permutation() - marker_permutation
-
marker_prediction_plot() - marker_prediction_plot
-
marker_surface_plot() - marker_surface_plot
-
marker_surface_plot_stack() - marker_surface_plot_stack
-
measure_association_to_cell_properties() - measure_association_to_cell_properties
-
mixing_score_summary() - Calculate the (normalised) mixing score for interested cell types
-
number_of_cells_within_radius() - number_of_cells_within_radius
-
plot_average_intensity() - plot_average_intensity
-
plot_cell_categories() - plot_cell_categories
-
plot_cell_distances_violin() - plot_cell_distances_violin
-
plot_cell_marker_levels() - plot_cell_marker_levels
-
plot_cell_percentages() - plot_cell_percentages
-
plot_composition_heatmap() - plot_composition_heatmap
-
plot_distance_heatmap() - plot_distance_heatmap
-
plot_marker_level_heatmap() - plot_marker_level_heatmap
-
predict_phenotypes() - predict_phenotypes
-
print_feature() - Print the unique values of a specified column
-
select_celltypes() - select_celltypes
-
simulated_image - SCE object of a formatted image (simulated by `spaSim` package)